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Using L6wdin's partition method we have re-derived the D. Weinstein lower bound, E > H 11 - a .  
By the same method, plus the assumption that the calculated first excited state energy is lower than a 
certain weighted average of approximate energies of all the excited states, we have derived a moderately 
better lower bound. 

There exist two useful methods for obtaining lower bounds to ground state 
energies. One method [-1, 2, 3] starts by separating the Hamil tonian of the problem 
into two parts, i.e. H = Ho + Ha.  Ho is a part  which has eigenfunctions that can 
be obtained exactly. This requirement seems to restrict this method to atoms. 

In the other practical method,  one uses the theorem of D. Weinstein [-4] which 
guarantees that the difference between (~0LHko) and the nearest eigenvalue of 
H is less than one standard deviation, o-. The standard deviation is defined by 

~2 = (q~L (/-/- (q,I I-/Iq,)) 2 Iq~). 

Let E a be the energy of the first excited state. If we assume 

�89 + e2) > (el H Iq,) (1) 

i.e., that the approximate  value obtained is closer to the ground state than to the 
first excited state, then D. Weinstein's theorem leads to the lower bound for E1 
(also referred to as E). 

E > (q~l H ko) - o-. (2) 

This method is largely inelegant because it is in essence only the quantification 
of assumption (1). On the other hand, with present-day computers,  in practice 
it is quite usual in a serious a pr ior i  calculation to get an approximate value for the 
energy which is much closer to E x than to E 2. Consequently the assumption made 
is not very arbitrary; actually it is a highly likely one. I t  is to be noted that this 
method can be used for both atomic and molecular calculations. 

The present paper presents a lower bound formula of the type of (2). This new 
lower bound is higher than that of (2). The derivation of this lower bound also 
utilizes an assumption, highly likely to be the case. In passing we will derive 
inequality (2) from another  starting point. 

We choose any complete, discrete and or thonormal  basis. In general it will 
be of infinite dimension. In this basis the Schr6dinger eigenvalue equation appears 
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as follows: 
n c  = E C .  (3) 

The eigenvalue is represented as a column vector C. We can write the basis as 
( U l ,  U 2 . . . . .  U . . . . .  )" 

As is usual in solving such problems, we obtain the eigenvectors of the matrix 
K H K ,  where K is 

(1 ; ,  ~ ) .  

The matrix K is the projection operator for the space of the first n functions out 
of the complete set. Next, in place of the original first n basis functions let us take 
the n linear combinations of them which diagonalize the K H K  matrix. Let ~o~ 
be the eigenvector of K H K  which has the lowest eigenvalue. Our new basis is 
(q) l ,  (P2 . . . . .  q~n, U.+ a, U.+ 2 . . . .  ). We have simply scrambled the first n functions; 
the succeeding functions from the (n + 1)' th function on are unchanged. It will be 
convenient for notational clarity to rename the whole basis set as 

(q~i) = (qh, q~2 . . . . .  q~n, q~,+ l, ';0,+2 . . . .  )" 

At this point we partition the basis in the manner of L6wdin [-5, 6]. We divide the 
basis into two subspaces. The first subspace is q~ ~ and the second subspace is all 
the other functions, i.e. the set of all functions orthogonal to cp~. The latter set will 
be called the b space. Then (Cl) 

C =  C b "  

Equation (3) is now written as 

H11 

Hbl 
H~b q = E C l  (4) 
Hbb Cb lob[' 

(P 1 is our trial wave function. H 11 = (~0~[ H ]qo~ ) is our closest approximate value 
for the ground state energy. Hlb and Hb~ are infinite dimensional row and column 
vectors respectively. Hbb is a square matrix. The subscript b here is not an index, 
to be summed over; it merely indicates the b space. 

At this point we diagonalize the Hbb matrix by a unitary transformation. The 
new basis functions f2,  f3 . . . . .  fv  . . . . .  which diagonalize Hbb, are used instead 
of ~o 2, q~3, ..., ~op . . . .  etc. We rename cp 1 as f l .  From L6wdin's equation (33) of 
Ref. [6] we get 

E = H ~ I  + ~ ]H~pI2(E--E,) -1 ,  (5) 
p = 2  

where Hip is ( f l [ H l f p ) .  
There must exist an average Ep, which we can call E, such that 

IH,,12(E - E,) -~ = F, [Hlv l2(E-E)  -1- 
p=2 p=2 

Note that the quantity ~ [Hipl 2 is precisely a 2, the variance of the expectation 
p = 2  
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value of the Hamiltonian. 

0"2 = ( fa[  ( H -  Hi1) 2 [ f l )  = ( H f x  [ H f x  ) - ( f l l H ] f l )  2 . 

Since the basis { fv}  is complete, we can expand the vector H f l  in this basis: 

p k 

p=l p=2 

Equation (5) thus simplifies to 

(E - Ha 1) (E - E) = a 2 . (6) 

E is a certain weighted average of the eigenvalues of the b space. At this point 
the selection of a substitute value for E (of which we are ignorant) produces the 
required lower bound. Let the substitute value be E s. If E~ satisfies 

E > Es > E (7) 

then we have 
(E - HI~ ) (E - E~) < a 2 . (8) 

After some algebra on inequality (8), remembering that E s > E, one obtains finally 

E >  Xll + Es V (Es-Hll)2 
2 12 + 4 - -  (9) 

Inequality (9) is the general form of our lower bound. If we take/-/1 ~ as E~, 
i.e. if we assume that Ha 1 is lower than a weighted average of the eigenvalues of the 
b space, we obtain inequality (2), D. Weinstein's lower bound. Any value substituted 
for Es in inequality (9) will increase the value of the right side of the inequality as 
long as the value substituted for E~ is greater than H1 ~. A reasonable choice 
appears to be H22 , the second best energy derived from the original n basis func- 
tions. Calculations using large values of n should have no difficulty in satisfying 
the requirement that Hzz  < E, which plays the same role in the present formula 
that the requirement HI~ <�89 + E 2 )  played for the recipe of inequality (2). 
Substitution of H22 for E~ in (9) gives a higher upper bound than that of (2), as 
can be easily shown by some simple algebra. To give an example of the extent of 
improvement, which is only moderate, we cite the case of the hydrogen atom 
ground state problem using as basis functions the energy eigenfunctions of a 
spherical harmonic oscillator. If we take n = 8, then E = - 0.48695166 is the upper 
bound; 0" = 0.55381853 is the standard deviation. The lower bound of (2) is then 

- 1.04077019; the lower bound of(9), using H22 as Es, is - 0.82966672. 
It is evident that the present lower bound is more satisfactory than that derived 

from the D. Weinstein theorem. However, it is still far less accurate than the upper 
bound. Future work may provide a value of E~ which is higher, hence better, 
than Hzz.  
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